If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x-53=0
a = 1; b = 14; c = -53;
Δ = b2-4ac
Δ = 142-4·1·(-53)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{102}}{2*1}=\frac{-14-2\sqrt{102}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{102}}{2*1}=\frac{-14+2\sqrt{102}}{2} $
| D^3+4D^2+4D)y=0 | | -x-6=-3x+2 | | 7x^2-2800=0 | | 6x+21=-x+0 | | a-5,a=14 | | 36x-20.6=14x+89,4 | | x^2-23=145 | | x2−36=x2−36=0 | | 8+23+x=42+18 | | x2−36=x2−36= 0 | | x2−36=x2−36= 0 | | y(y-5)+750=0 | | |3x+2|=|4x+5| | | (y+25)(y-30)=0 | | 6x-14=-2(3x-5) | | 1/2x-4=-1/2x+3 | | 750-y(y-5)=0 | | 10x+4×=126 | | x2+2x= −5x−5x | | x2+2x=−5x−5x | | 2x+15+6x-37=6x+10 | | 50x30=7x4 | | 3/4(x+1)=1/4(x-3) | | 2/3x41/2=-8 | | x2+11x+13= 3 | | 54x30=7 | | 2x+3x=18+7 | | 19.3+n=30.4 | | 3(3x-1)-x=2(4x-5) | | 2x=18+2 | | 5x+1+19=18x-6 | | 5x+1+19=18-6 |